On certain order constrained Chebyshev rational approximations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Chebyshev Approximations for Fermi-Dirac Integrals of Orders

Rational Chebyshev approximations are given for the complete Fermi-Dirac integrals of orders — \, \ and f. Maximal relative errors vary with the function and interval considered, but generally range down to 10~9 or less.

متن کامل

CHEBINT: Operations on multivariate Chebyshev approximations

We detail the implementation of basic operations on multivariate Chebyshev approximations. In most cases, they can be derived directly from well known properties of univariate Chebyshev polynomials. Besides addition, subtraction and multiplication, we discuss integration, indefinite di↵erentiation, indefinite integration and interpolation. The latter three, can be written as matrix-vector produ...

متن کامل

Rational Chebyshev Approximation on the Unit Disk

In a recent paper we showed that er ror curves in po lynomia l Chebyshev a p p r o x i m a t i o n of ana ly t ic functions on the unit disk tend to a p p r o x i m a t e perfect circles abou t the origin [23]. M a k i n g use of a theorem of Ca ra th6odo ry and Fej6r, we der ived in the process a me thod for calculat ing near-bes t a p p r o x i m a t i o n s rapid ly by finding the pr incipal...

متن کامل

Generalized Rational Chebyshev Approximation

In this paper, a generalized rational Chebyshev approximation problem is considered. The problem is this: To minimize the maximum absolute value of the "criterion function" of the error. By imposing a rather natural restriction on the criterion function, the problem is solved completely; the existence, the uniqueness and the characterization of the best approximation are clarified and interesti...

متن کامل

On computing rational Gauss-Chebyshev quadrature formulas

We provide an algorithm to compute the nodes and weights for Gauss-Chebyshev quadrature formulas integrating exactly in spaces of rational functions with arbitrary real poles outside [−1, 1]. Contrary to existing rational quadrature formulas, the computational effort is very low, even for extremely high degrees, and under certain conditions on the poles it can be shown that the complexity is of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1976

ISSN: 0021-9045

DOI: 10.1016/0021-9045(76)90073-3